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Introduction 


Three geomechanical criteria govern salt cavern designs:
• Time-dependent behavior


• Tension


• Dilation


With respect to dilation:
• Must maintain stress conditions below the dilation threshold


• Dilation threshold is determined from laboratory testing


Desirable operation region







Constant Mean Stress Test
• Specimen subjected to hydrostatic confinement
• Deviatoric stress on specimen is increased while the


confining pressure is decreased such that the mean
stress on the specimen remains constant


• Volumetric strain is computed and monitored during
the test







Constant Mean Stress Test







Dilation Limit


• CMS tests conducted in both


compression and extension


• Dilation limit from each test


plotted with respect to stress


invariants


• Various criteria used to fit


the data


• Ideally, limit stresses within


cavern to levels below the


dilation criteria line
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Dilation Limit


Axisymmetric cavern analysis showing dilation under 


minimum pressure conditions.







Variability of Dilation Limit


Maximum dilation stress


Minimum dilation stress


Average dilation stress


What value of the dilation


stress should be used in


design?







Introduction to Probabilistic-Based Design


• Uncertainty in geotechnical design is the result of several


sources (Phoon et al. 1995):


1. Inherent variability


2. Measurement errors


3. Transformation uncertainties / scale effects


• A global factor of safety approach can only indirectly account


for these uncertainties – “factor of ignorance”. Therefore, a


probabilistic-based design method is desired.


• Probabilistic-based design methods employ random variables


and Latin Hypercube sampling to generate thousands of


possible outcomes.







Methodology


• RESPEC has developed a large database of dilation strength


for both bedded and domal salt.


• RD criterion contains three fitting variables: D1, D2, and n.


• Examine range in variability of dilation strength by fitting


RD criterion to maximum, minimum, and average within


laboratory data.


• This can be accomplished by changing the fitting variables.
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Methodology


Variability in dilation strength for bedded salt







Methodology


Variability in dilation strength for domal salt







Methodology


Coefficient of variation (COV) for fitting variables for bedded salt:


D1 = 20%


D2 = 3%


n = 5%


D1
(MPa)


D2 n To
(MPa)


Bedded


Minimum 0.66 0.90 0.47 –
Mean 1.19 0.96 0.57 1.92


Maximum 1.90 1.00 0.60 –


Domal


Minimum 0.66 0.55 0.52 –
Mean 1.23 0.61 0.57 1.40


Maximum 1.90 0.75 0.60 –







Latin Hypercube


• Now, conduct a Latin Hypercube simulation using the RD


criterion and COV of the fitting variables. This will result in


the generation of thousands of dilation strength curves:







Analysis of RD Criterion Curves


• Once the curves are generated, it is possible to “cut” the


curves at a value of I1 (mean stress):


Dilation curves cut


at I1 = 30 MPa. This


results in a range of


values for .
2J







Analysis of RD Criterion Curves


• The range of values for can be visualized as a cumulative


distribution function and the statistics can be computed:


Statistics (30 MPa)


m = 10.08 MPa


 = 1.84 MPa


2J







Analysis of RD Criterion Curves


• The last step is to determine a “probability of exceedance”


given a value of within an element of interest:


Example


= 8.25 MPa


Exceedance = 16%


= 6.05 MPa


Exceedance = 2%


2J


Probability of exceedance = likelihood of exceeding the dilation criterion.


2J


2J







Probability of Exceedance


• The probability of exceedance, pf, can be related to a target


reliability index, bT, or expectation of performance:


b T p f Expected Performance


0 0.500 -
0.5 0.309 -
1.0 0.159 Hazardous
1.5 0.067 Unsatisfactory
2.0 0.023 Poor
2.5 0.006 Below average
3.0 0.001 Above average
3.5 0.0002 -
4.0 0.00003 Good
4.5 0.000003 -
5.0 0.0000003 High


Adapted from U.S. Army Corps of Engineers 1997, Table B-1


Typical


range







Example


• The approach can be used to determine the probability of


exceedance for elements surrounding a cavern:


Probability of exceedance for the cavern floor.







Conclusion


• A probabilistic-based method has been developed to assess


the potential for dilation in a salt cavern.


• The probabilistic method replaces the traditional factor of


safety approach and can implicitly account for uncertainties.


• Through the use of the Latin Hypercube sampling method,


hundreds of RD dilation criterion curves were generated.


• The curves can be analyzed at a value of I1 to determine a


“probability of exceedance” at a corresponding value of .


• Research continues to incorporate the process based on


compression and extension states of stress.
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Questions?
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Outline
 Comparison of typically cylindrical vs. large-diameter caverns
 Introduce large diameter caverns of US Strategic Petroleum 


Reserve (SPR) West Hackberry site, Caverns 6 and 9:
 WH-6 operations, oil removal, and follow-up diagnostics;
 WH-9 workover scheduling, and differential pressure between WH-6 


& 9 during that workover.
 Introduce large diameter caverns of SPR Bryan Mound site:


 Unknown status of abandoned cavern BM-3, monitoring equipment 
recently installed;


 Ongoing concerns of stability of BM-2;
 Effects of leaching of huge cavern BM-5 on salt falls, hanging string 


survival.
 Use of normal field data (subsidence, pressure monitoring), 


cavern inspection (sonar, casing inspection), computational 
modeling to understand behavior, develop action plans







Cylindrical storage caverns
Typical cylindrical caverns: H/D >> 1 (~7 to 10), 
7-12 MMB
Primary benefits
 Creep primarily in radial direction, floor rise
 Optimal shape for minimal tensile stresses, 


strains created in wellbore casings


Secondary effects
 Minimize subsidence effects transmitted to surface
 Minimize formation of dilatancy, cracks around perimeter
 Easier shape for fluid exchange
 Easy geometry to map with sonar
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Large-diameter storage caverns
H/D < 1, 7-36 MMB, 350-m roof
Resulting problems
 For large diameter, creep primarily in roof and 


floor, creating substantial tensile stresses, 
strains created in wellbore casings


 Large diameter roof more prone to roof sag,
potential loss of access to oil, roof failure


 Larger subsidence, transmitted to larger area 
on surface


 Greater potential for formation of dilatancy, 
cracks around perimeter, particularly for 
close proximity caverns 


 Difficult shape for fluid exchange
 Difficult geometries to map with sonar 4







West Hackberry SPR Site
 One of four DOE SPR sites
 ~228 MMB of oil storage in 22 


caverns.
 17 cylindrical-shaped storage 


caverns (#101-117) built in 
early 1980s.


 5 unusually-shaped, 
reasonably axisymmetric 
storage caverns (6, 7, 8, 9, 11) 
built in 1940s-1950s.


 Approximately 480m 
sandstone overburden, 120 m 
anhydrite/ carbonate caprock 
over salt dome.


 WH salt is reasonably 
homogeneous, isotropic, 
relatively high creep 
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West Hackberry Cavern Layout
 Cavern 6 shape (~350 m diameter, 6 MMB) causes 


significant ceiling subsidence, creating excessive 
potential for casing failures, loss of access to oil


 Cavern 9 (~180 m diameter, 9 MMB) has mid-
height ledge prone to high shear, in close 
proximity of Cavern 6 rim (closed in early 1990s)


 High creep rates put excessive tension on casings
 Proximity of Caverns 6/9/8 (~70 m between edge 


of Cavern 6, top lobe of Cavern 9) increases 
sympathetic pressure response, presents other 
operational issues regarding casing, cavern 
damage
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West Hackberry


 General Issues:
 Cavern 6 shape causes excessive potential for casing failures (including 


failures in 2010, 2012, only 1 of 3 boreholes still operational), loss of 
access to ~6 MMB oil due to roof sag


 Proximity of Caverns 6/9/8 presents other operational issues to prevent 
casing, cavern damage


 Resulting effects on site operations
 Based on SNL recommendations, Cavern 6 oil has been removed 


(probably permanently) for better ability to assess roof, perimeter, 
volume of trapped oil


 Sonar measurements of Cavern 6 has been performed
 Operations for Caverns 6, 8, 9 must be carefully scheduled
 GPS/tiltmeter installation above WH-6







West Hackberry half dome model
• Original model (2009) was a half-dome 


model – eastern half of site, roughly half of 
cavern volume.


• Model implements Sierra geomechanical 
code Adagio, M-D creep model.


• Several simulations of cavern operations 
performed, 2009-2014.


• Simulations specifically analyze operations 
of WH-6 & 9 related to workovers, oil 
withdrawal from 6, continued operations.







Simultaneous WH6, 8, 9 operations
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Planned 2014 WH-6 oil removal/ WH-
8/9 workover schedule simulated for 
effect on casings:
• WH-8 workover induces over 2 mε


near the bottom of its casing
• Simultaneous depressurization of 


WH-6, 8 causes significant strain 
in WH-9 casing


• WH-9 workover induces nearly 1.6 
mε in its casing


Recommendations:
• No simultaneous WH-6 & 8 


workovers
• Slow dp/dt rates (minimum 5 days) 


pre- and post-workover
• For cavern integrity standpoint, no 


need to specify a maximum 
wellhead/cavern roof pressure 
differential between WH-6, 9 if ΔP  
operations are performed slowly







Roof Sag in WH-6
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• Simulations predict 100-
170 thousand barrels 
(MB) of oil above bottom 
of Well 6B, roof sag of 11 
feet (3.3 m)


• Sonar performed Oct. 
2014 shows roof sag of 
12 feet (3.6 m), likely 
mapped oil/brine 
interface, did not reduce 
uncertainty of remaining 
oil volume


• Only 314 barrels of oil 
positively identified; 
remaining oil estimated at 
100 MB







GPS Surface Displacement at WH-6
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GPS/tiltmeter system was 
installed in 2013 at WH-6 
wellhead.
• Continuously monitor 


ground elevation, surface 
tilt


• Warning if ground 
displacement exceeds 76 
mm or if tilt exceeds 0.1°; 
alarm at 190 mm or if tilt 
exceeds 0.3°


• Annual monument surveys 
show subsidence of 15-20 
mm/y


• Upward movement trend 
begins around October 
2013, about 10 mm; cause 
of this apparent surface 
rise is currently unknown.







Bryan Mound SPR Site
Bryan Mound site includes:
 ~240 MMB of oil storage in 20 


caverns.
 16 cylindrical-shaped storage caverns 


(101-116) built in early 1980s.
 4 unusually-shaped storage caverns 


(1, 2, 4, 5) built in 1940s-1950s.
 Approximately 232m sandstone 


overburden, 85 m anhydrite/ 
carbonate caprock over salt dome.


 Highly nonhomogeneous salt, 
caprock damaged by sulfur mining; 
generally slower creeping than WH.


 Large diameter abandoned Cavern 
#3 near top of salt dome.
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Bryan Mound Cavern 3 Information
 410-m diameter cavern constructed 


for brine production, storage in 
1940s; plugged/abandoned in 1980, 
with no downhole monitoring 
instrumentation.


 Drilling records indicate leaching 
fluids reached salt/caprock interface; 
several reports of lost fluid during 
operation as brine cavern until 1980.


 Cavern’s depth is ~450 m, only about 
90 m beneath the overlying caprock, 
conditions that raise concerns about 
cavern collapse extending to the 
surface [Karimi-Jafari et al. (2008), 
New Mexico EM&NR Dept. (2011), 
etc.]. 


 Cavern 3 is located in close proximity 
to several significant features of the 
Bryan Mound site, including four 
large oil and brine storage tanks, two 
storage caverns, and primary access 
road for the site.
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Surveyed Subsidence Data


 Subsidence data from 88 monuments across BM site; higher subsidence over BM-3 
observed since 1999.


 Subsidence rates in the region over Cavern 3 are always among the highest of the site, 
varying between 0.02 and 0.14 ft/yr (6 to 42 mm/yr). 14


Jan. 2007-
Apr. 2009


Apr. 2009-
Oct. 2010


Oct. 2010-
Mar. 2012


Mar. 2012-
Mar. 2013


Mar. 2013-
May 2014







Bryan Mound Geomechanical Model
 Geomechanical calculations performed using 


finite element of full dome, caverns meshed to 
sonar-based geometries (ARMA 2012).


 Power law creep model (secondary creep 
component of M-D model) applied to salt.


 Predicted subsidence over Cavern 3 after 30 
years of 1.1 feet (335 mm), with 0.03° tilt. 
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Predicted Surface Subsidence Rates, 
Undamaged vs. Damaged Cavern 3


Undamaged Damaged
Model times at August of 2010, 2011, 2012, 2013


16
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2013: Installation of GPS, Tiltmeters


 3 tiltmeters installed at wellhead, north and 
south boundaries of cavern.


 Measured tilt well below warning settings; both 
tiltmeters are tilting towards the south with the 
southernmost meter tilting at a greater angle. 


 Annual, quarterly data show that highest 
subsidence is also over the southern half of the 
cavern.


17


 GPS installed at Cavern 3 wellhead.
 System issues warning if daily/weekly ground 


displacement exceeds 0.25 inch (6.35 mm), or 
if tilt exceeds 0.1°. Alarm will sound if ground 
displacement exceeds 0.625 inch (15.9 mm) or 
if tilt exceeds 0.3°.


 Over 18 months the GPS is averaging -0.026 
feet/yr (-8 mm/yr), slightly larger than the rate 
of the quarterly monument subsidence data.
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Evaluation Plan for BM Cavern 3
To monitor the ongoing status of BM Cavern 3 and determine cause 
for the apparent enhanced subsidence, 3 priorities have been 
identified:
 Real-time monitoring of surface subsidence to detect the possible 


imminent collapse of cavern and thus trigger emergency procedures
 GPS/tiltmeter data are processed hourly, and values that exceed the 


established thresholds trigger specific notification and inspection 
procedures and/or alarms.


 Acquisition of historical subsidence data to determine the cause and 
specific location of the source of the enhanced subsidence 
 Investigating the acquisition of historical interferometric synthetic 


aperture radar (InSAR) data; may be able to determine location of leak.
 Installation of other equipment to monitor subsurface events such as 


cavern or casing failure 
 Installation of geophones or other surface seismic instrumentation to 


detect subsurface events. This application has not yet been addressed.
18







Bryan Mound Cavern 2 Information
 Diameter of about 200 m, a height of 


about 67 m, and holds 7.2 MMB of oil.
 Two-well cavern, neither has had any 


modifications to their original completion 
in 1979.


 Location high in the salt dome (450 m 
depth, only about 90 m beneath 
overlying caprock) raises concerns of 
long-term cavern stability. 


 Much like WH-6, analyses and inspection 
indicate roof has experienced significant 
sag, and there may be oil trapped above 
the OBI inaccessible for brine re-
placement recovery.


 Evidence both wells have extensive 
damage, venting gas for many years.


 Decision has been made to remove oil, 
inspect cavern, evaluate for future 
disposition; plan for cavern to be 
maintained with pressurized brine, 
monitored.
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Bryan Mound Cavern 5 Information
 Cavern 5 is a giant cavern characterized 


by upper and lower lobes separated by a 
small neck.


 Erratic geometry is highly related to the 
level of anhydrite encountered at each 
depth.


 Cavern was drilled in 1957 for brine 
production, converted to oil storage by 
DOE around 1980; currently holds about 
36.8 MMB. 


 Four wells were drilled into BM-5 prior to 
DOE ownership, though only two are 
active: Well 5A penetrates into the upper 
lobe, and has hanging string that extends 
well into the lower ; Well 5C intersects 
upper lobe, then proceeds through salt 
into the lower lobe, has 273-mm hanging 
string broken off in the upper lobe with 
oil in the brine string.
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Heterogeneity of Salt: Anhydrite vs. Depth


21


Example: Anhydrite % 
from well BM5 core 
samples taken in 1957


Note neck region 
coincides with 
one anhydrite 
spike at ~2780 ft


Cavern geometry 
creates difficulties 
in using fresh 
water to draw 
down the cavern 
for oil removal.







Conclusions
 WH-6 & 9: Oil has been removed from WH-6, will be brine 


pressurized and monitored long-term; workover procedures 
developed for WH 8 & 9 to prevent casing, cavern damage.


 Bryan Mound 3: Abandoned cavern continuously monitored to 
detect potential failure; additional data under consideration to 
evaluate need for cavern reentry, remediation.


 Bryan Mound 2: Oil removal process initiated, wells to be 
inspected, evaluated for repair potential, future disposition to be 
determined. 


 Bryan Mound 5: Ongoing concerns about ability to perform fresh-
water drawdown, removal of oil without emulsion issues.


 For all caverns: Improvement of analytical techniques, acquisition 
of additional data ongoing for more informed evaluation of cavern 
behavior, future usage.
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THANK YOU FOR YOUR ATTENTION!
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Predicted strain on WH6 casing 
during workover


 Axial strains in the salt 
around the well bore are 
significant every time a 
workover on Cavern 6 is 
performed, exerting as much 
as 1 additional millistrain
during a 60-day procedure 
(cement threshold strain 0.2 
mε, steel casing 1.6 mε).


 Highest strains predicted to 
occur at 2500-2700 feet 
depth.


 Strains continue to grow as 
the cavern is held at low 
pressure. 24


Depth







Surveyed Elevation Change Over 
Cavern 3


 In 2010 five new monuments were established over the expanse of Cavern 3, including the 
Cavern 3 well head. Since May 2010 quarterly surveys have been conducted over Cavern 3.


 Change in subsidence rate after March 2012, to 0.02 ft/yr (6 mm/yr), considered normal.
 SMS 33, on southern edge of cavern, has higher subsidence than rest of cavern footprint. 25












REVERSE CREEP
in the laboratory and in salt caverns
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Denzau H. & Rudolph F. (1997). Field test for determining the convergence of a gas storage 
cavern under load conditions frequently changing between maximum and minimum pressure 
and its finite element modelling. Proc. SMRI Spring meeting, Cracow, Poland.
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Any pressure change triggers a transient evolution
which includes:


1. Various phenomena which tend to restore the initial 
thermodynamical equilibrium (Le Chatelier-Braun)


2. Geometrical transient creep (slow stress redistribution in 
the rock mass)


3. Rheological transient creep (as observed in the lab.)


Karimi-Jafari M., Bérest P. & Brouard B. (2007.) Some aspects of the transient behavior of salt caverns.
Proc. 6thConf. Mech. Beh. Salt
Bérest P., Brouard B., Karimi-Jafari M., Van Sambeek L. ( 2007).Transient behaviour of salt caverns.
Interpretation of Mechanical Integrity Tests. Int. J. Rock Mech. Min. Sc. 44, 767-786
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Any pressure change triggers a transient evolution
which includes:


1. Various phenomena which tend to restore the initial 
thermodynamical equilibrium (Le Chatelier-Braun)


2. Geometrical transient creep (slow stress redistribution in 
the rock mass)


3. Rheological transient creep (as observed in the lab.)
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…. CAVERN BEHAVIOR EXHIBITS A TRANSIENT COMPONENT


No stress redistribution
in the salt sample
following a stress change


Stress redistribution
in the salt mass
following 
a cavern pressure change







EVEN WHEN NO TRANSIENT COMPONENT IS INCLUDED IN THE CREEP 
LAW (NORTON-HOFF LAW), A CAVERN EXPERIENCES  A « REVERSE » 
TRANSIENT VOLUME INCREASE WHEN THE PRESSURE INCREASE  IS 
LARGE ENOUGH  (‘’GEOMETRICAL’’ TRANSIENT CREEP)
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VOLUME LOSS
RATES


PRESSURE DECREASEPRESSURE INCREASE


PRESSURE INCREASE


0
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1
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Wang L., Bérest P. & Brouard B. (2015). Mechanical Behavior of Salt Caverns: 
Closed-Form Solutions vs Numerical Computations. Rock Mech Rock Eng
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Any pressure change triggers a transient evolution
which includes:


1. Various phenomena which tend to restore the initial 
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Interpretation of Mechanical Integrity Tests. Int. J. Rock Mech. Min. Sc. 44, 767-786
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σ-Δσ = 0.57 MPa
σ = 5.7 MPaσ = 5.7 MPaσ = 5.7 MPa


σ Δσ = 0.57 MPa


σ = 5.7 MPa


Hunsche U. (1988). Measurement of creep in rock salt at small strain rates. 5th Conf. Mech. Beh. Salt


TEMPERATURE IS EXTREMELY WELL CONTROLLED (1/1000 C)
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Hunsche U. (1988). Measurement of creep in rock salt at small strain rates. 5th Conf. Mech. Beh. Salt
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0.108 MPa 0.076 MPa


εε


End of reverse creep
(after 100 days) 


End of reverse creepEnd of reverse creep







σ


22Conf Mech Beh Salt


THERMOELASTIC
(STAFF IN THE ROOM)


REVERSE, 1st PHASE


REVERSE, 2nd PHASE


STRAIN GAUGE RESOLUTION: nm
RECORDED EVERY MINUTE
STABLE TEMPERATURE (1/100 C)
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0.3MPa


Bérest P., Béraud JF., Brouard B., DeVries K., Gharbi H. (2014).
A very slow creep test on an Avery Island salt sample. Proc. ARMA Symp.
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Temperature


STRAIN GAUGE RESOLUTION: 1/80 μm
RECORDED EVERY TWO SECONDS
STABLE TEMPERATURE (1/100 C)
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creep  (30 days)
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« BACK STRESS »


• The back stress is the post-drop stress below 
which reverse creep can be observed


• Most authors believe that the back stress equals 
70% of the pre-drop stress


• However more recent tests (strain resolution Δε = 
10-7, strain recorded every second) strongly 
suggest that the back stress is much larger (90% 
of the pre-drop stress?)
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CONCLUSIONS


• In a cavern, the apparent ‘’Reverse creep closure’’ following a pressure 
increase includes: transient evolution to thermal, chemical, hydraulical 
equilibrium  + ‘’geometrical’’ reverse creep  + ‘’rheological’’ reverse 
creep. 


• Rheological reverse creep (observed during lab tests) include two phases 
(fast and short /slow and long). 


• Recent tests suggest that the back stress is not much smaller than the pre-
drop stress. 


• When interpreting an MIT, the effects of reverse creep closure must be 
taken into account.


• Stress control is a concern during a creep test, as the effects of stress 
fluctuations are not symmetrical (Wawersik, 1st Conf. Mech. Beh. Salt)
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Introduction
 Brazilian salt rock mechanics – experimental and numerical


methodologies inherited from:


 Taquari-Vassouras potash mine (Rosário do Catete/SE);


 Institute for Technological Research (São Paulo/SP).


 Synergy with the industry: potash mining and Pre-salt reservoirs.
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Ref.: Costa (1984) and Poiate Jr. (2012)


Source: Agência Vale


Source: Petrobras







Introduction
 Double mechanism creep law – widely employed model for creep in


Brazilian salt rock mechanics.
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Initial elastic strain


Steady-state creep rate
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Experimental
Double mechanism creep law


Time
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Experimental
Double mechanism creep law


Only the steady-state creep
rate is simulated.







Multi-mechanism Deformation Creep Model (MD model)
 Highly sophisticated physical constitutive model for salt creep


 Simulation of the transient and steady-state phases of creep


 WIPP: origin and development


 Database for GoM salt rocks.
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Deformation mechanism map for salt rock
(after Munson & Dawson, 1979)
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Ref.: Munson & Dawson (1979), Munson (1997, 2004)







Multi-mechanism Deformation Creep Model (MD model)
 Formulation


 휀 = 𝐹  휀𝑠𝑠


Transient function (𝐹)


Steady-state creep rate (  휀𝑠𝑠)
Dislocation Climb (DCL)


Undefined mechanisms (UMC)


Dislocation Glide (DGL)
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Multi-mechanism Deformation Creep Model (MD model)
 Formulation


 휀 = 𝐹  𝜺𝒔𝒔


Transient function (𝐹)


Steady-state creep rate (  휀𝑠𝑠)
Dislocation Climb (DCL)


Undefined mechanisms (UMC)


Dislocation Glide (DGL)


 휀𝑠𝑠 =  


 휀𝐷𝐶𝐿 = 𝐴1 exp
−𝑄1
𝑅𝑇


𝜎𝑒𝑞
𝐺


𝑛1


 휀𝑈𝑀𝐶 = 𝐴2 exp
−𝑄2
𝑅𝑇


𝜎𝑒𝑞
𝐺


𝑛2


 휀𝐷𝐺𝐿 = 𝐻 𝜎𝑒𝑞 − 𝜎0 𝐵1 exp
−𝑄1
𝑅𝑇


+ 𝐵2 exp
−𝑄2
𝑅𝑇


sinh
𝑞 𝜎𝑒𝑞 − 𝜎0


𝐺
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Multi-mechanism Deformation Creep Model (MD model)
 Formulation


 휀 = 𝐹  𝜺𝒔𝒔
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Transient function (𝐹)


Steady-state creep rate (  휀𝑠𝑠)
Dislocation Climb (DCL)


Undefined mechanisms (UMC)


Dislocation Glide (DGL)


Dislocation Climb and Undefined mechanisms - our agreement


Dislocation Climb: “Glide with climb is often called just climb because the climb process


actually controls the deformation rate even though the plastic deformation results from glide.


(…)” Fossum & Fredrich (2002).


Undefined Mechanisms: Recently, an association between this mechanism and the


Dislocation Cross-Slip is suggested (Hansen, 2014).







Multi-mechanism Deformation Creep Model (MD model)
 Formulation


 휀 = 𝐹  𝜺𝒔𝒔


Deviatoric stress (eq)


eq < 0


eq > 0


Energy for the dislocations to transpose


the tangles of crystal grains through slip


planes – the concept of Peierl’s stress.


(Individual equation is adopted)


Implicitly regarded as plastic deformations


in Climb mechanism.


(Individual equation is not adopted)


Dislocation Glide - our agreement
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Multi-mechanism Deformation Creep Model (MD model)
 Formulation


 휀 = 𝑭  휀𝑠𝑠


𝐹 =


exp ∆ 1 −
휁


휀𝑡
∗


2


; 휁 < 휀𝑡
∗


1 ; 휁 = 휀𝑡
∗


exp −𝛿 1 −
휁


휀𝑡
∗


2


; 휁 > 휀𝑡
∗


 휁 =
𝜕휁


𝜕𝑡
≈
Δ휁


Δ𝑡
= (𝐹 − 1)  휀𝑠𝑠


휀𝑡
∗ = 𝐾0 exp 𝑐𝑇


𝜎𝑒𝑞
𝐺


𝑚


∆= 𝛼ℎ + 𝛽ℎ log
𝜎𝑒𝑞
𝐺


Euler’s Forward method
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Calibration


Parameters for 


Brazilian halite


Implementation


MD model as 


subroutine


Validation 


Methodology


Parameters


Multi-mechanism Deformation Creep Model (MD model)
 Workflow to use the MD model in Brazilian halite


Introduction MD model Calibration Applications Conclusions







Calibration


Parameters for 


Brazilian halite


Implementation
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Validation 
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Parameters


Calibration
 Calibration of the material sensitive parameters for Brazilian halite
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Ref.: The methodology to the calibration was presented by Munson (1999). Analogy with


the Double mechanism creep law (Costa et al., 2005) has also been considered.







Calibration
 Steady-state material sensitive parameters (A, B and n)


 Transient material sensitive parameters (K0 and ah)
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Calibration
 Steady-state material sensitive parameters (A, B and n)
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Calibration
 Steady-state material sensitive parameters (A, B and n)
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Steady-state creep parameters


A1 = 1.638 (1027) s-1


n1 = 7.2


A2 = 1.924 (106) s-1


n2 = 3.2


log10  𝜎𝑑
𝐺 = 0


𝑦1
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Transient creep parameters


K0 = 7.750 (104) 


ah = -17.37 (trial and error, WIPP)


Calibration
 Transient material sensitive parameters (K0 and ah)
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Calibration
 Set of parameters for Brazilian halite


Steady-state parameters


A1 (s-1) Structural factor for DCL 1.638 (1027)


Q1 (J/mol) Thermal activation for DCL 104500.0 ***


n1 Stress power for DCL 7.2


A2 (s-1) Structural factor for UMC 1.924 (106)


Q2 (J/mol) Thermal activation for UMC 41800.0 ***


n2 Stress power for UMC 3.2


0 (MPa) Reference stress for DGL 20.57 ***


q Stress constant 5335.0 ***


B1 (s-1) Structural factor for DGL 9.981 (106) **


B2 (s-1) Structural factor for DGL 4.976 (10-2) **


Transient function parameters


m Theoretical constant 3.0 ***


K0 Limit factor of transient creep 7.750 (104)


c (K-1) Constant - activation process 9.198 (10-3) ***


ah Hardening parameter -17.37 ***


bh Hardening parameter -7.738 ***


d Softening parameter 0.58 ***


Dynamic elastic parameters


E (GPa) Young’s modulus 25.37


n Poisson’s ratio 0.36 ****


Introduction MD model Calibration Applications Conclusions


Ref.: **Big Hill Salt and ***WIPP standard from Fossum & Fredrich (2002),


****Costa et al. (2005).
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 Set of parameters for Brazilian halite
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Our contribution


Dynamic elastic parameters


E (GPa) Young’s modulus 25.37


n Poisson’s ratio 0.36 ****
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Ref.: **Big Hill Salt and ***WIPP standard from Fossum & Fredrich (2002),


****Costa et al. (2005).
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 Simulations for validation
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Applications
 Triaxial creep tests
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Time domain analyses
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Sample of Brazilian halite
(Poiate Jr., 2012)
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Applications
 Triaxial creep tests
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Validation of the MD model


Test A -Experimental
Test B -Experimental
Test C/D -Experimental
MD model - Simulation A
MD model - Simulation B
MD model - Simulation C
MD model - Simulation D


Simulation Dev. stress (MPa) Duration (h)


A 10.0 * 350


B 14.0 * 1000


C 17.0 * 2200


D 16.0 – 18.0 ** 2200


*Instantaneous deviatoric stress application


**Linear load increase
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Ref.: Experimental results from Costa et al. (2005) and  Poiate Jr. (2012)
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Applications
 Synthetic gallery of Taquari-Vassouras Potash Mine
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Ref.: Experimental results from D’Ellia (1991)
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 Excellent agreement between numerical


solutions and field measurements.


 Most measurements seem related to an


isotropic stress state (KHh = 1.0).


 Section 06 has adequately been simulated


considering KHh = 1.5, but other geological


aspects might be responsible for this (rather


than KHh).


 In-situ stresses in the region of the TV mine


are likely to be hydrostatic (Fairhurst et al.,


1979).
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Conclusions
 The calibration of the Brazilian halite sensitive parameters has led


to structure factors and stress powers quite distinct from the typical


range observed for WIPP and GoM salts.


 Transient and steady-state creep phases have been successfully


simulated with the MD model and with this set of parameters.


 Further investigation should continue in order to consolidate this


set of parameters and identify its possible limitations.


 Extension to other salt rocks: sylvinite, carnallite and tachyhydrite.
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